Setelahkita memahami cara mencari determinan dan transpose sebuah matriks maka selanjutnya kita akan mencari nilai minor, kofaktor, matrik kofaktor dan . Menentukan determinan dengan metode ekspansi kofaktor. Pos tentang contoh soal determinan matriks 4×4 yang ditulis oleh ogin sugianto. Determinan matriks centrosymmetric bentuk khusus ordo Metodereduksi baris untuk menentukan determinan matriks. Ukuran matriks disebut dengan ordo matriks. By definition $(1)$, each elements of the adjugate matrix are. Invers matriks dengan ekspansi kofaktor. Jika a dan b adalah matriks persegi, dan berlaku maka dikatakan matriks a dan b saling invers. MenghitungDeterminan dengan Ekspansi Kofaktor Nilai determinan suatu matriks dapat juga di hitung dengan menggunakan ekspansi kofaktor sebeelum kita menghitung determinan suatu matriks.Namun sebelum itu,perhatikan terlebih dahulu beberapa definisi dan istilah-istilah yang berhubungan dengan kosep perhitungan tersebut. Definisi 1. DeterminanMatriks 3x3 Metode Sarrus Dan Minor Kofaktor 2nv8e2k5prlk from mencari determinan matriks, ada baiknya kita terlebih dahulu mengetahui definisi dari suatu matriks matematika. 50 contoh soal determinan matriks ordo 3x3 beserta jawabannyamakalah invers matriks 2x2 dan 3x3 contoh soal jawaban penjelasannya contoh matriks kalkulatorpenentu matriks online membantu Anda menghitung determinan dari elemen input matriks yang diberikan. Kalkulator ini menentukan nilai determinan matriks sampai dengan ukuran matriks 5 × 5. Ini dihitung dengan mengalikan anggota diagonal utamanya & matriks reduksi menjadi bentuk eselon baris. Kami memiliki informasi mendetail tentang Perhitungandeterminan dibagi menjadi ekspansi baris dan kolom. Determinan diperoleh dengan perkalian antara elemen matriks semula dengan kofaktornya pada 1 baris atau 1 kolom yang telah kita tentukan. Perbesar Determinan matriks dengan ordo 3x3 metode minor kofaktor ( FAUZIYYAH) . Daftar Isi Apa itu Ekspansi Kofaktor?Contoh 1 Menghitung Determinan dengan Metode Ekspansi KofaktorContoh 2 Kelebihan Metode Ekspansi Kofaktor1. Dapat diterapkan pada matriks persegi 2×2 atau Efektif untuk yang suka perhitungan manual dan secara Konsep kofaktor berguna untuk mencari invers Metode Ekspansi KofaktorContoh 3 Apa itu Ekspansi Kofaktor?Metode ekspansi kofaktor adalah suatu metode untuk menghitung determinan dengan menggunakan kofaktor yang mengutamakan kemampuan berhitung secara manual dan secara apa itu kofaktor?Metode SarrusMetode Kupu-KupuSebelum mengenal apa itu kofaktor, mari kita ingat kembali pada saat duduk di bangku SMA kita sudah mengenal dan memahami aturan sarrus untuk matriks 3×3 dan metode kupu-kupu untuk matriks 2×2.Perhatikan contoh berikut Didefinisikan matriks \A\ dan \B\ sebagai berikut $$A=\left[{\begin{array}{cc}a_{11}&a_{12}\\a_{21}&a_{22}\end{array}}\right],~B=\left[{\begin{array}{ccc}b_{11}&b_{12}&b_{13}\\b_{21}&b_{22}&b_{23}\\b_{31}&b_{32}&b_{33}\end{array}}\right]$$Kita akan menentukan determinan matriks \A\ dan \B\. Berdasarkan metode kupu-kupu pada matriks \A\ kita peroleh $$\begin{aligned}\text{det}A&=a_{11}a_{22}-a_{12}a_{21}\\&=a_{11}-1^{1+1}a_{22}+a_{12}-1^{1+2}a_{21}\\&=a_{11}-1^{1+1}\left{a_{22}}\right+a_{12}-1^{1+2}\left{a_{21}}\right\end{aligned}$$dan pada matriks \B\ dengan berdasarkan aturan sarrus dan kupu-kupu kita peroleh $$\begin{aligned}\text{det}B&=b_{11}b_{22}b_{33}+b_{12}b_{23}b_{31}+b_{13}b_{21}b_{32}-b_{13}b_{22}b_{31}-b_{11}b_{23}b_{32}-b_{12}b_{21}b_{33}\\&=b_{11}-1^{1+1}\left{b_{22}b_{33}-b_{23}b_{32}}\right+b_{12}-1^{1+2}\left{b_{21}b_{33}-b_{23}b_{31}}\right+b_{13}-1^{1+3}\left{b_{21}b_{32}-b_{22}b_{31}}\right\\&=b_{11}-1^{1+1}\left{\begin{array}{cc}b_{22}&b_{23}\\b_{32}&b_{33}\end{array}}\right+b_{12}-1^{1+2}\left{\begin{array}{cc}b_{21}&b_{23}\\b_{31}&b_{33}\end{array}}\right+b_{13}-1^{1+3}\left{\begin{array}{cc}b_{21}&b_{22}\\b_{31}&b_{32}\end{array}}\right\end{aligned}$$Dari pernyataan di atas bahwa determinan matriks \B\ dapat dicari dengan menggunakan determinan matriks yang lebih kecil, begitu pula pada matriks \A\.Kemudian pada contoh di atas tanpa kita sadari, juga telah menerapkan konsep kofaktor, untuk lebih jelasnya, berikut definisi kofaktor Definisi Kofaktor Jika \A_{n\times n}=\left[{a_{ij}}\right]\ maka kofaktor dari \a_{ij}\ dapat lambangkan \C_{ij}\ dan \C_{ij}=-1^{i+j}M_{ij}\, dengan \M_{ij}\ menyatakan minor dari \a_{ij}\ dan \M_{ij}\ adalah determinan dari submatriks \A\ yang diperoleh dengan mencoret semua entri pada baris ke-\i\ dan semua entri pada kolom ke-\j\.Baca juga Definisi Fungsi Determinan dengan Perkalian ElementerContoh 1 Tentukan minor dan kofaktor dari entri \a_{12}, a_{31}\ dan \a_{23}\ pada matriks \A\ berikut $$A=\left[{\begin{array}{ccc}2&-1&1\\1&0&-1\\2&-2&0\end{array}}\right]$$Penyelesaian Minor \a_{12}\ diperoleh dengan cara mencoret semua entri pada baris ke-\1\ dan semua entri pada kolom ke-\2\, kemudian dihitung determinannya $$M_{12}=\left{\begin{array}{cc}1&-1\\2&0\end{array}}\right=10-12=2$$dan kofaktor dari \a_{12}\ adalah $$C_{12}=-1^{1+2}M_{12}=-1\times 2=-2$$Dengan cara yang sama kita cari minor dan kofaktor dari \a_{31}\ dan \a_{23}\.$$M_{31}=\left{\begin{array}{cc}-1&1\\0&-1\end{array}}\right=1~\text{sehingga}~C_{31}=-1^{3+1}M_{31}=1$$dan$$M_{23}=\left{\begin{array}{cc}2&-1\\2&-2\end{array}}\right=-2~\text{sehingga}~C_{23}=-1^{2+3}M_{23}=2$$Selanjutnya kita akan menghitung determinan suatu matriks persegi dengan menerapkan konsep ekspansi Determinan dengan Metode Ekspansi KofaktorDeterminan dari matriks \A_{n\times n}=\left[{a_{ij}}\right]~\forall~i,j =\{1,2,3,\dots,n\}\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau dalam suatu kolom dengan kofaktor-kofaktornya. Kemudian menjumlahkan semua hasil-hasil kali yang dihasilkan, atau dapat ditulis $$\text{det}A=a_{i1}C_{i1}+a_{i2}C_{i2}+\dots+a_{in}C_{in}$$Karena baris ke-\i\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang baris ke-\i\$$\text{det}A=a_{1j}C_{1j}+a_{2j}C_{2j}+\dots+a_{nj}C_{in}$$Karena kolom ke-\j\ menjadi acuan, maka disebut juga ekspansi kofaktor sepanjang kolom ke-\j\Contoh 2 Didefinisikan matriks \A\ sebagai berikut $$A=\left[{\begin{array}{ccc}3&0&-2\\2&5&1\\-1&3&1\end{array}}\right]$$Dengan metode ekspansi kofaktor tentukan determinan matriks \A\.Penyelesaian Tips pilih baris atau kolom yang mengandung banyak unsur/entri nol agar perhitungan menjadi lebih pilih baris pertama \a_{12}=0\ sehingga kita dapat tuliskan $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{12}C_{12}+a_{13}C_{13}\\&=a_{11}C_{11}+a_{13}C_{13}\dots*\end{aligned}$$Kemudian kita cari nilai dari masing-masing kofaktor $$M_{11}=\left{\begin{array}{cc}5&1\\3&1\end{array}}\right=2~\Rightarrow~C_{11}=-1^{1+1}2=2$$$$M_{13}=\left{\begin{array}{cc}2&5\\-1&3\end{array}}\right=11~\Rightarrow~C_{13}=-1^{1+3}11=11$$Sehingga jika kita subtitusikan ke persamaan \*\ akan diperoleh $$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{13}C_{13}\\&=32+-211\\&=-16\end{aligned}$$Baca juga Alasan Metode Sarrus Hanya Berlaku pada Matriks 3×31. Dapat diterapkan pada matriks persegi 2×2 atau metode sarrus terbatas pada ordo \3 \times 3\ maka untuk menghitung determinan dengan ordo yang lebih tinggi \4\times 4, 5\times5,\dots,n\times n\ dapat menggunakan metode ekspansi dimulai dari matriks 2×2 ?Hal ini karena pada matriks 1×1 dalam mencari determinannya cukup menggunakan definisi saja, dimana jika terdapat matriks \A_{1\times1}=\left[a_{11}\right]\ maka determinannya adalah \\text{det}A=a_{11}\.2. Efektif untuk yang suka perhitungan manual dan secara ini didapat dari perbandingan dengan metode lainnya seperti aturan sarrus dan reduksi baris, dimana masing-masing mempunyai kelebihan tersendiri. Ekspansi kofaktor juga sekaligus dapat melatih ketahanan dalam berhitung, kita ambil contoh pada saat mencari determinan \A_{5\times 5}\ maka kita akan menemukan determinan dari submatriks dari \A\ yang berukuran \4 \times 4\, dimana determinan dari submatriks tersebut kita hitung juga dengan ekspansi kofaktor sehingga akan ditemukan determinan submatriks dari submatriks \A\ yang berukuran \3 \times 3\ dan paham konsep dari ekspansi kofaktor dan mempunyai hitungan yang tepat maka metode ekspansi kofaktor akan efektif Konsep kofaktor berguna untuk mencari invers saat duduk dibangku SMA pasti sudah mengenal rumus mencari invers berikut $$A_{n\times n}^{-1}=\frac{\text{Adjoin}A}{\text{det}A}$$Pada persamaan tersebut terdapat Adjoin\A\ yang didefinisikan sebagai transpose matriks kofaktor dari \A\ dapat kita tuliskan $$\text{Matriks kofaktor A}=\left[{\begin{array}{cccc}C_{11}&C_{12}&\dots&C_{1n}\\C_{21}&C_{22}&\dots&C_{2n}\\\vdots&\vdots&\ddots&\vdots\\C_{n1}&C_{n2}&\dots&C_{nn}\end{array}}\right]$$Maka $$\text{Adjoin}A=\left[{\begin{array}{cccc}C_{11}&C_{21}&\dots&C_{n1}\\C_{12}&C_{22}&\dots&C_{n2}\\\vdots&\vdots&\ddots&\vdots\\C_{1n}&C_{2n}&\dots&C_{nn}\end{array}}\right]$$Dari kenyataan tersebut, jelas bahwa konsep kofaktor dapat dimanfaatkan untuk mencari invers matriks. Sehingga tidak ada salahnya mempelajari ekspansi kofaktor, namun disamping itu metode ekspansi kofaktor menurut penulis masih terdapat Metode Ekspansi KofaktorMenurut penulis metode ekspansi kofaktor dalam segi kecepatan masih kurang jika dibandingkan dengan metode campuran yaitu gabungan dari macam-macam metodesarrus, kupu-kupu, ekspansi kofaktor, reduksi baris dan lainnya yang dipadukan dengan sifat-sifat postingan ini kita tidak akan membahas mengenai metode reduksi baris. Sehingga sekarang untuk membuktikan argumen tersebut, saya asumsikan kita sudah memahami metode reduksi 3 Misalkan kita akan menghitung determinan matriks \A\ sebagai berikut $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\2&7&2&1\\1&6&4&-1\\-3&3&1&2\end{array}}\right$$Kita akan mereduksi matriks tersebut dengan mengenakan operasi baris elementer \-2R_{1}+R_{2}\rightarrow R_{2}\\-R_{1}+R_{3}\rightarrow R_{3}\\3R_{1}+R_{4}\rightarrow R_{4}\secara berturut-turut sehingga kita peroleh $$\text{det}A=\left{\begin{array}{cccc}1&4&5&-2\\0&-1&-8&5\\0&2&-1&1\\0&15&16&-4\end{array}}\right$$Nah, selanjutnya kita kenakan metode ekspansi kofaktor, kita pilih entri-entri pada kolom pertama dimana \a_{11}=1\ dan \a_{21}=a_{31}=a_{41}=0\.$$\begin{aligned}\text{det}A&=a_{11}C_{11}+a_{21}C_{21}+a_{31}C_{31}+a_{41}C_{41}\\&=C_{11}\end{aligned}$$Dengan aturan sarrus kita peroleh $$\begin{aligned}M_{11}&=\left{\begin{array}{cccc}-1&-8&5\\2&-1&1\\15&16&-4\end{array}}\right\\&=-1-1-4+-8115+5216-5-115-1116-82-4\\&=63\end{aligned}$$Sehingga kita peroleh $$\text{det}A=C_{11}=-1^{1+1}M_{11}=163=63$$Jadi dengan menggunakan metode campuran akan lebih efektif, namun kita dituntut untuk sekreatif mungkin untuk menyusun alur perhitungan yang termudah. Definisi Jika A adalah matriks kuadrat, maka minor entri $a_{ij}$ dinyatakan oleh $M_{ij}$ dan didefinisikan menjadi determinan submatriks yang tetap setelah baris ke i dan kolom j dicoret dari A. Bilangan $-1^{i+j}M_{ij}$ dinyatakan oleh $C_{ij}$ dan dinamakan kofaktor entri $a_{ij}$ Minor Minor dari suatu unsur adalah suatu determinan yang dihasilkan setelah terjadi penghapusan baris dan kolom di mana unsur itu terletak. Contoh $M_{12}=\begin{vmatrix}a_{21} & a_{23}\\ a_{31} & a_{33}\end{vmatrix}=a_{21}a_{33}-a_{23}a_{31}$ Kofaktor Kofaktor dari suatu unsur adalah minor unsur itu berikut tanda. Kofaktor dari suatu unsur yang terletak pada garis ke-i dan ke-j dirumuskan sebagai berikut $-1^{i+j}M_{ij}$ dengan i = 1,2,3,.... j = 1,2,3,.... Contoh $\begin{bmatrix}3 & 1 & -4\\ 2 & 5 & 6\\ 1 & 4 & 8\end{bmatrix}$ Minor entri $a_{ij}$ adalah $M_{11}=\begin{bmatrix}3 & 1 & -4\\ 2 & 5 & 6\\ 1 & 4 & 8\end{bmatrix}=\begin{vmatrix}5 & 6\\ 4 & 8\end{vmatrix}=16$ Kofaktor $a_{ij}$ adalah $C_{11}=-1^{1+1}M_{11}=M_{11}=16$ Cara cepat menentukan apakah + atau - yaitu $\begin{bmatrix}+ & - & + & - & + & \cdots \\ - & + & - & + & - & \cdots\\ + & - & + & - & + & \cdots\\ - & + & - & + & - & \cdots\\ \vdots & \vdots & \vdots & \vdots & \vdots & \end{bmatrix}$ Contoh soal 1. Diketahui matriks $A=\begin{bmatrix}3 & 5 & 7\\ -2 & 4 & 3\\ 4 & -1 & 2\end{bmatrix}$. Tentukan determinan matriks A dengan cara ekspansi kofaktor menurut baris kedua Jawab $\begin{vmatrix}3 & 5 & 7\\ {\color{Red}-2} &{\color{Red}4} &{\color{Red}3}\\ 4 & -1 &2\end{vmatrix}$ $=-2\begin{vmatrix}5 & 7\\ -1 &2 \end{vmatrix}+4\begin{vmatrix}3 & 7\\ 4 &2 \end{vmatrix}-3\begin{vmatrix}3 & 5\\ 4 &-1 \end{vmatrix}$ = 210+7 + 46-28 - 3-3-20 = 217 + 4-22 -3-23 = 15 Jadi det A = 15, untuk membuktikannya coba menggunakan cara sarrus atau kofaktor menurut baris lainnya!

menentukan determinan matriks dengan ekspansi kofaktor